bassemu~.c 11.87 KiB
/* (c) 2006 Ch. Klippel
* this software is gpl'ed software, read the file "LICENSE.txt" for details
*/
#include "m_pd.h"
#include "math.h"
/* -------------------------- bassemu~ ------------------------------ */
static t_class *bassemu_class;
#define VER_MAJ 0
#define VER_MIN 3
#define PI_2 6.28218530717958647692
#define sinfact (2. * 6.28328)
typedef struct _bassemu
{
t_object x_obj;
float vco_inc, vco_actinc;
float current_wave, ideal_wave, delta, vco_count;
float pw;
int vco_type, hpf;
float glide;
float thisnote;
float tune;
float vcf_cutoff, vcf_envmod, vcf_envdecay, vcf_reso, vcf_rescoeff;
float vcf_a, vcf_b, vcf_c, vcf_c0, vcf_d1, vcf_d2, vcf_e0, vcf_e1;
int vcf_envpos;
float vca_attack;
float vca_decay;
float vca_a;
float vca_a0;
int vca_mode;
int limit_type;
int ext_type;
char ext_pre;
int envinc;
float decay;
float pitch;
float sr;
float dummy;
} t_bassemu;
static t_int *bassemu_perform(t_int *ww)
{
t_bassemu *x = (t_bassemu *)(ww[1]);
t_float *inbuf = (t_float *)(ww[2]);
t_float *outbuf = (t_float *)(ww[3]);
int n = (int)(ww[4]);
float w = 0, k=0, ts=0, is=0;
// only compute if needed .......
if (x->vca_mode != 2)
{
// begin bassemu dsp engine
while(n--)
{
if (x->ext_type > 0)
{
is = (*inbuf++ * 0.48);
if (is < -0.48) is = -0.48f;
if (is > 0.48) is = 0.48f;
}
// update vcf
if(x->vcf_envpos >= x->envinc) {
w = x->vcf_e0 + x->vcf_c0;
k = exp(-w/x->vcf_rescoeff);
x->vcf_c0 *= x->vcf_envdecay;
x->vcf_a = 2.0*cos(2.0*w) * k;
x->vcf_b = -k*k;
x->vcf_c = 1.0 - x->vcf_a - x->vcf_b;
x->vcf_envpos = 0;
}
// update vco
if (!x->glide) x->vco_actinc = x->vco_inc; // handle glide
else
{
if (x->vco_inc > x->vco_actinc)
x->vco_actinc = (x->vco_actinc +
((x->vco_inc -
x->vco_actinc) /
(x->glide * (x->sr/10.)) ) );
if (x->vco_inc < x->vco_actinc)
x->vco_actinc = (x->vco_actinc -
((x->vco_actinc -
x->vco_inc) /
(x->glide * (x->sr/10.)) ) );
}
// select waveform
switch((int)x->vco_type)
{
case 0 : // sawtooth
x->ideal_wave = sin(x->vco_count);
x->vco_count += x->vco_actinc;
break;
case 1 : // rectangle
if ((x->vco_count+0.5) <= x->pw)
x->ideal_wave = -0.5;
else
x->ideal_wave = 0.5;
x->vco_count += x->vco_actinc;
break;
case 2 : // triangle
if (x->vco_count == -0.5 )
x->ideal_wave = (x->vco_count + 0.000001);
else
{
if (x->vco_count <= 0.0 )
x->ideal_wave = (x->ideal_wave + (x->vco_actinc * 2));
else
x->ideal_wave = (x->ideal_wave - (x->vco_actinc * 2));
}
x->vco_count += x->vco_actinc;
break;
case 3 : // sine
x->ideal_wave = (sin(sinfact * (x->vco_count + 0.5)) / 2);
x->vco_count += (x->vco_actinc / 2.);
break;
default : break;
}
// waveform rises faster than it falls
if( x->vco_count <= 0.0 )
x->current_wave = ( x->current_wave + ((x->ideal_wave - x->current_wave) * 0.95 ));
else
x->current_wave = ( x->current_wave + ((x->ideal_wave - x->current_wave) * 0.9 ));
// recyle and end
if (x->vco_count > 0.5)
x->vco_count = (-0.5);
// run external through VCO-HPF
if(x->ext_pre)
switch((int)x->ext_type)
{
case 1 :
x->current_wave = is;
break;
case 2 :
x->current_wave = ((x->current_wave + is) *0.5f);
break;
default : break;
}
ts = x->current_wave;
// vco hpf function
if( x->hpf )
{
x->delta = (x->delta * x->current_wave);
x->delta = (x->delta * 0.99 );
ts = ((x->delta*2)+0.5);
x->delta = (x->delta - x->current_wave );
}
// update vca
if(!x->vca_mode)
x->vca_a += (x->vca_a0 - x->vca_a) * x->vca_attack;
else if(x->vca_mode == 1)
{
x->vca_a *= x->vca_decay;
if(x->vca_a < (1/65536.0))
{
x->vca_a = 0;
x->vca_mode = 2;
}
}
// mix external without filtering with VCO-HPF
if(!x->ext_pre)
switch((int)x->ext_type)
{
case 1 :
ts = is;
break;
case 2 :
ts = ((ts + is) * 0.5f);
break;
default : break;
}
// compute sample
ts = x->vcf_a * x->vcf_d1 + x->vcf_b * x->vcf_d2 + x->vcf_c * ts * x->vca_a;
x->vcf_d2 = x->vcf_d1;
x->vcf_envpos++;
x->vcf_d1 = ts;
switch((int)x->limit_type)
{
case 1 : // hard limit
if (ts > 0.999) ts = 0.999;
if (ts < -0.999) ts = -0.999;
*outbuf++ = ts;
break;
case 2 : // sine limiting
*outbuf++ = sin(ts);
break;
default : // no limiting et al
*outbuf++ = ts;
break;
}
}
} //end vcamode != 2
else
while(n--)
{
*outbuf++ = 0.0f;
}
return (ww+5);
}
static void bassemu_dsp(t_bassemu *x, t_signal **sp)
{
x->sr = sp[0]->s_sr;
dsp_add(bassemu_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec,
(t_int)sp[0]->s_n);
}
static void recalc(t_bassemu *x)
{
x->vcf_e1 = exp(6.109 + 1.5876*(x->vcf_envmod) + 2.1553*(x->vcf_cutoff) - 1.2*(1.0-x->vcf_reso));
x->vcf_e0 = exp(5.613 - 0.8*(x->vcf_envmod) + 2.1553*(x->vcf_cutoff) - 0.7696*(1.0-x->vcf_reso));
x->vcf_e0 *=M_PI/x->sr;
x->vcf_e1 *=M_PI/x->sr;
x->vcf_e1 -= x->vcf_e0;
x->vcf_envpos = x->envinc;
}
static void bassemu_note(t_bassemu *x, t_floatarg f)
{
// calculate note and trigger vca
if(f != -1) { // note
x->thisnote = x->pitch + f-57;
x->vco_inc = ((x->tune/x->sr)*pow(2, (x->thisnote)*(1.0/12.0)) / 2.);
x->vca_mode = 0;
x->vcf_c0 = x->vcf_e1;
x->vcf_envpos = x->envinc;
}
else x->vca_mode = 1;
}
static void bassemu_pitch(t_bassemu *x, t_floatarg f)
{
x->thisnote -= x->pitch;
x->pitch = f;
x->thisnote += x->pitch;
x->vco_inc = ((x->tune/x->sr)*pow(2, (x->thisnote)*(1.0/12.0)) / 2.);
}
static void bassemu_list(t_bassemu *x, t_symbol *s, int argc, t_atom *argv)
{
if (argc >= 5)
{
// get decay
if(argv[4].a_type == A_FLOAT && (atom_getfloatarg(4,argc,argv) != -1))
{ // decay
float d = atom_getfloatarg(4,argc,argv);
x->decay = d;
d = 0.2 + (2.3*d);
d*=x->sr;
x->vcf_envdecay = pow(0.1, 1.0/d * x->envinc);
}
recalc(x);
}
if (argc >= 4)
{
// get envelope modulation
if(argv[3].a_type == A_FLOAT && (atom_getfloatarg(3,argc,argv) != -1))
{ // envmod
x->vcf_envmod = atom_getfloatarg(1,argc,argv);
}
recalc(x);
}
if (argc >= 3)
{
//get resonance
if(argv[2].a_type == A_FLOAT && (atom_getfloatarg(2,argc,argv) != -1))
{ // resonance
x->vcf_reso = atom_getfloatarg(1,argc,argv);
x->vcf_rescoeff = exp(-1.20 + 3.455*(x->vcf_reso));
}
recalc(x);
}
if (argc >= 2)
{
// get cutoff
if(argv[1].a_type == A_FLOAT && (atom_getfloatarg(1,argc,argv) != -1))
{ // cutoff
x->vcf_cutoff = atom_getfloatarg(1,argc,argv);
}
recalc(x);
}
if (argc >= 1)
{
if(argv[0].a_type == A_FLOAT && (atom_getfloatarg(0,argc,argv) != -1))
{ // note
x->thisnote = atom_getfloatarg(0,argc,argv)-57;
x->vco_inc = ((x->tune/x->sr)*pow(2, (x->thisnote)*(1.0/12.0)) / 2.);
x->vca_mode = 0;
x->vcf_c0 = x->vcf_e1;
x->vcf_envpos = x->envinc;
}
else
x->vca_mode = 1;
recalc(x);
}
}
static void bassemu_vco(t_bassemu *x, t_floatarg f)
{
if ((f >= 0) && (f <= 8))
x->vco_type = f;
else
x->vco_type = 0;
}
static void bassemu_hpf(t_bassemu *x, t_floatarg f)
{
if ((f >= 0) && (f <= 1))
x->hpf = f;
else
x->hpf = 0;
}
static void bassemu_glide(t_bassemu *x, t_floatarg f)
{
if (f == 0)
x->glide = 0;
else
x->glide = f;
}
static void bassemu_limit(t_bassemu *x, t_floatarg f)
{
if ((f >= 0) && (f <=2)) x->limit_type = f;
}
static void bassemu_ext(t_bassemu *x, t_floatarg f)
{
if ((f >= 0) && (f <=2)) { x->ext_type = f; x->ext_pre = 0; }
if (f == 3) { x->ext_type = 1; x->ext_pre = 1; }
if (f == 4) { x->ext_type = 2; x->ext_pre = 1; }
}
static void bassemu_tune(t_bassemu *x, t_floatarg f)
{
x->tune = f;
x->vco_inc = ((x->tune/x->sr)*pow(2, (x->thisnote)*(1.0/12.0)) / 2.0);
}
static void bassemu_envinc(t_bassemu *x, t_floatarg f)
{
float d = x->decay;
if (f >= 1) x->envinc = f;
d = 0.2 + (2.3*d);
d *= x->sr;
x->vcf_envdecay = pow(0.1, 1.0/d * x->envinc);
}
static void bassemu_cutoff(t_bassemu *x, t_floatarg f)
{
x->vcf_cutoff = f;
recalc(x);
}
static void bassemu_reso(t_bassemu *x, t_floatarg f)
{
x->vcf_reso = f;
x->vcf_rescoeff = exp(-1.20 + 3.455*(x->vcf_reso));
recalc(x);
}
static void bassemu_envmod(t_bassemu *x, t_floatarg f)
{
x->vcf_envmod = f;
recalc(x);
}
static void bassemu_decay(t_bassemu *x, t_floatarg f)
{
float d = f;
x->decay = d;
d = 0.2 + (2.3*d);
d*=x->sr;
x->vcf_envdecay = pow(0.1, 1.0/d * x->envinc);
}
static void bassemu_pw(t_bassemu *x, t_floatarg f)
{
x->pw = f;
if (x->pw > 1.0)
x->pw = 1.0;
if (x->pw < 0.0)
x->pw = 0.0;
}
static void bassemu_reset(t_bassemu *x, t_floatarg f)
{
x->vco_inc = 0.0f;
x->vco_actinc = 0.0f;
x->current_wave = 0.0f;
x->ideal_wave = 0.0f;
x->delta = 0.0f;
x->vco_count = 0.0f;
x->pw = 0.5f;
x->vco_type = 0;
x->hpf = 0.0f;
x->glide = 0.0f;
x->tune = 440.0f;
x->thisnote = 0;
x->vcf_cutoff = 0.0;
x->vcf_envmod = 0.0;
x->vcf_envdecay = 0.0;
x->vcf_reso = 0.0;
x->vcf_rescoeff = 0.0f;
x->vcf_a = 0.0;
x->vcf_b = 0.0;
x->vcf_c = 0.0;
x->vcf_c0 = 0.0;
x->vcf_d1 = 0.0;
x->vcf_d2 = 0.0;
x->vcf_e0 = 0.0;
x->vcf_e1 = 0.0f;
x->vcf_envpos = 64;
x->vca_attack = (float)(1.0f - 0.94406088f);
x->vca_decay = (float)(0.99897516f);
x->vca_a = 0.0f;
x->vca_a0 = 0.5f;
x->vca_mode = 2 ; // attack (0) / decay (1) / silent (2) mode
x->limit_type = 2;
x->ext_type = 0;
x->ext_pre = 0;
x->envinc = 64;
x->decay = 0;
x->pitch = 0;
}
static void *bassemu_new(t_symbol *s, int argc, t_atom *argv)
{
unsigned int numargs;
t_bassemu *x = (t_bassemu *)pd_new(bassemu_class);
outlet_new(&x->x_obj, gensym("signal"));
bassemu_reset(x,0);
x->sr = 44100.;
return (x);
}
static void bassemu_free(t_bassemu *x)
{
}
void bassemu_tilde_setup(void)
{
bassemu_class = class_new(gensym("bassemu~"), (t_newmethod)bassemu_new,
(t_method)bassemu_free, sizeof(t_bassemu), CLASS_DEFAULT, A_GIMME, 0);
CLASS_MAINSIGNALIN(bassemu_class, t_bassemu, dummy);
class_addmethod(bassemu_class, (t_method)bassemu_dsp, gensym("dsp"),
A_CANT, 0);
class_addfloat (bassemu_class, (t_method)bassemu_note); // start/stop using a toggle
class_addmethod(bassemu_class, (t_method)bassemu_list, gensym("list"), A_GIMME, 0);
class_addmethod(bassemu_class, (t_method)bassemu_vco, gensym("vco"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_hpf, gensym("hpf"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_glide, gensym("glide"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_limit, gensym("limit"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_ext, gensym("ext"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_tune, gensym("tune"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_envinc,gensym("envinc"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_reset, gensym("reset"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_cutoff,gensym("cutoff"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_reso, gensym("reso"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_envmod,gensym("envmod"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_decay, gensym("decay"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_pw, gensym("pw"), A_DEFFLOAT, 0);
class_addmethod(bassemu_class, (t_method)bassemu_pitch, gensym("pitch"), A_DEFFLOAT, 0);
post("bassemu~: transistor bass emulation");
post("bassemu~: version %i.%i",VER_MAJ, VER_MIN);
post("bassemu~: (c) 2006 Ch. Klippel - ck@mamalala.de");
post("bassemu~: this is gpl'ed software, see README for details\n");
}