Skip to content
Snippets Groups Projects
d_fftroutine.c 37.2 KiB
Newer Older
Miller Puckette's avatar
Miller Puckette committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/*****************************************************************************/
/*                                                                           */
/* Fast Fourier Transform                                                    */
/* Network Abstraction, Definitions                                          */
/* Kevin Peterson, MIT Media Lab, EMS                                        */
/* UROP - Fall '86                                                           */
/* REV: 6/12/87(KHP) - To incorporate link list of different sized networks  */
/*                                                                           */
/*****************************************************************************/

/*****************************************************************************/
/* added debug option 5/91 brown@nadia                                       */
/* change sign at AAA                                                        */
/*                                                                           */
/* Fast Fourier Transform                                                    */
/* FFT Network Interaction and Support Modules                               */
/* Kevin Peterson, MIT Media Lab, EMS                                        */
/* UROP - Fall '86                                                           */
/* REV: 6/12/87(KHP) - Generalized to one procedure call with typed I/O      */
/*                                                                           */
/*****************************************************************************/

/* Overview:
        
   My realization of the FFT involves a representation of a network of
   "butterfly" elements that takes a set of 'N' sound samples as input and
   computes the discrete Fourier transform.  This network consists of a 
   series of stages (log2 N), each stage consisting of N/2 parallel butterfly
   elements. Consecutive stages are connected by specific, predetermined flow 
   paths, (see Oppenheim, Schafer for details) and each butterfly element has
   an associated multiplicative coefficient.

   FFT NETWORK:
   -----------  
      ____    _    ____    _    ____    _    ____    _    ____
  o--|    |o-| |-o|    |o-| |-o|    |o-| |-o|    |o-| |-o|    |--o
     |reg1|  | |  |W^r1|  | |  |reg1|  | |  |W^r1|  | |  |reg1|
     |    |  | |  |    |  | |  |    |  | |  |    |  | |  |    | .....
     |    |  | |  |    |  | |  |    |  | |  |    |  | |  |    |  
  o--|____|o-| |-o|____|o-| |-o|____|o-| |-o|____|o-| |-o|____|--o
             | |          | |          | |          | |
             | |          | |          | |          | |
      ____   | |   ____   | |   ____   | |   ____   | |   ____ 
  o--|    |o-| |-o|    |o-| |-o|    |o-| |-o|    |o-| |-o|    |--o
     |reg2|  | |  |W^r2|  | |  |reg2|  | |  |W^r2|  | |  |reg2|
     |    |  | |  |    |  | |  |    |  | |  |    |  | |  |    | .....
     |    |  | |  |    |  | |  |    |  | |  |    |  | |  |    |
  o--|____|o-| |-o|____|o-| |-o|____|o-| |-o|____|o-| |-o|____|--o
             | |          | |          | |          | |
             | |          | |          | |          | |
       :      :     :      :     :      :     :      :     :
       :      :     :      :     :      :     :      :     :
       :      :     :      :     :      :     :      :     :
       :      :     :      :     :      :     :      :     :
       :      :     :      :     :      :     :      :     :

      ____   | |   ____   | |   ____   | |   ____   | |   ____ 
  o--|    |o-| |-o|    |o-| |-o|    |o-| |-o|    |o-| |-o|    |--o
     |reg |  | |  |W^r |  | |  |reg |  | |  |W^r |  | |  |reg |
     | N/2|  | |  | N/2|  | |  | N/2|  | |  | N/2|  | |  | N/2| .....
     |    |  | |  |    |  | |  |    |  | |  |    |  | |  |    |
  o--|____|o-|_|-o|____|o-|_|-o|____|o-|_|-o|____|o-|_|-o|____|--o

              ^            ^            ^            ^
    Initial   |  Bttrfly   |   Rd/Wrt   |   Bttrfly  |   Rd/Wrt
    Buffer    |            |  Register  |            |  Register
              |____________|____________|____________|
                                 |
                                 |
                            Interconnect
                               Paths

   The use of "in-place" computation permits one to use only one set of 
   registers realized by an array of complex number structures.  To describe
   the coefficients for each butterfly I am using a two dimensional array
   (stage, butterfly) of complex numbers.  The predetermined stage connections
   will be described in a two dimensional array of indicies.  These indicies 
   will be used to determine the order of reading at each stage of the    
   computation.  
*/


/*****************************************************************************/
/* INCLUDE FILES                                                             */
/*****************************************************************************/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

    /* the following is needed only to declare pd_fft() as exportable in MSW */
#include "m_pd.h"

/* some basic definitions */
#ifndef BOOL
#define        BOOL                    int
#define        TRUE                    1
#define        FALSE                   0
#endif

#define        SAMPLE float     /* data type used in calculation */

#define        SHORT_SIZE              sizeof(short)
#define        INT_SIZE                sizeof(int)
#define        FLOAT_SIZE              sizeof(float)
#define        SAMPLE_SIZE             sizeof(SAMPLE)
#define        PNTR_SIZE               sizeof(char *)

#define        PI                      3.1415927
#define        TWO_PI                  6.2831854

/* type definitions for I/O buffers */
#define        REAL                    0          /* real only          */
#define        IMAG                    2          /* imaginary only     */
#define        RECT                    8          /* real and imaginary */
#define        MAG                     16         /* magnitude only     */
#define        PHASE                   32         /* phase only         */
#define        POLAR                   64         /* magnitude and phase*/

/* scale definitions for I/O buffers */
#define        LINEAR                  0
#define        DB                      1          /* 20log10            */

/* transform direction definition */
#define        FORWARD                 1          /* Forward FFT        */
#define        INVERSE                 2          /* Inverse FFT        */

/* window type definitions */
#define        HANNING                 1
#define        RECTANGULAR             0



/* network structure definition */

typedef struct Tfft_net {
        int             n;
        int             stages;
        int             bps;
        int             direction;
        int             window_type;
        int             *load_index;
        SAMPLE          *window, *inv_window;
        SAMPLE          *regr;
        SAMPLE          *regi;
        SAMPLE          **indexpr;
        SAMPLE          **indexpi;
        SAMPLE          **indexqr;
        SAMPLE          **indexqi;
        SAMPLE          *coeffr, *inv_coeffr;
        SAMPLE          *coeffi, *inv_coeffi;
        struct Tfft_net *next;  
} FFT_NET;


void cfft(int trnsfrm_dir, int npnt, int window,
    float *source_buf, int source_form, int source_scale,
    float *result_buf, int result_form, int result_scale, int debug);


/*****************************************************************************/
/* GLOBAL DECLARATIONS                                                       */
/*****************************************************************************/

static FFT_NET  *firstnet;

/* prototypes */

void net_alloc(FFT_NET *fft_net);
void net_dealloc(FFT_NET *fft_net);
int power_of_two(int n);
void create_hanning(SAMPLE *window, int n, SAMPLE scale);
void create_rectangular(SAMPLE *window, int n, SAMPLE scale);
void short_to_float(short *short_buf, float *float_buf, int n);
void load_registers(FFT_NET *fft_net, float *buf, int buf_form,
    int buf_scale, int trnsfrm_dir);
void compute_fft(FFT_NET  *fft_net);
void store_registers(FFT_NET    *fft_net, float *buf, int buf_form,
    int buf_scale, int debug);
void build_fft_network(FFT_NET *fft_net, int n, int window_type);

/*****************************************************************************/
/* GENERALIZED FAST FOURIER TRANSFORM MODULE                                 */
/*****************************************************************************/

void cfft(int trnsfrm_dir, int npnt, int window,
    float *source_buf, int source_form, int source_scale,
    float *result_buf, int result_form, int result_scale, int debug)

/* modifies: result_buf
   effects:  Computes npnt FFT specified by form, scale, and dir parameters.  
         Source samples (single precision float) are taken from soure_buf and 
         the transfrmd representation is stored in result_buf (single precision
         float).  The parameters are defined as follows:
        
         trnsfrm_dir = FORWARD | INVERSE
         npnt        = 2^k for some any positive integer k
         window      = HANNING | RECTANGULAR
         (RECT = real and imag parts, POLAR = magnitude and phase)
         source_form = REAL | IMAG | RECT | POLAR  
         result_form = REAL | IMAG | RECT | MAG | PHASE | POLAR
         xxxxxx_scale= LINEAR | DB ( 20log10 |mag| )
         
         The input/output buffers are stored in a form appropriate to the type.
         For example: REAL  => {real, real, real ...}, 
                      MAG   => {mag, mag, mag, ... },
                      RECT  => {real, imag, real, imag, ... },
                      POLAR => {mag, phase, mag, phase, ... }.

         To look at the magnitude (in db) of a 1024 point FFT of a real time 
         signal we have:

         fft(FORWARD, 1024, RECTANGULAR, input, REAL, LINEAR, output, MAG, DB)

         All possible input and output combinations are possible given the 
         choice of type and scale parameters.
*/

{
         FFT_NET         *thisnet = (FFT_NET *)0;
         FFT_NET         *lastnet = (FFT_NET *)0;
         
         /* A linked list of fft networks of different sizes is maintained to
            avoid building with every call.  The network is built on the first
            call but reused for subsequent calls requesting the same size 
            transformation.
         */
   
         thisnet=firstnet;
         while (thisnet) {
             if (!(thisnet->n == npnt) || !(thisnet->window_type == window)) { 
               /* current net doesn't match size or window type */
               lastnet=thisnet;
               thisnet=thisnet->next;
               continue;                  /* keep looking */
             }

             else {                       /* network matches desired size */
               load_registers(thisnet, source_buf, source_form, source_scale, 
                              trnsfrm_dir);
               compute_fft(thisnet);      /* do transformation */
               store_registers(thisnet, result_buf, result_form, result_scale,debug);
               return;
             }
         }           

         /* none of existing networks match required size*/

         if (lastnet) {                 /* add new network to end of list */
           thisnet = (FFT_NET *)malloc(sizeof(FFT_NET));      /* allocate */
           thisnet->next = 0;
           lastnet->next = thisnet;     /* add to end of list             */
         }
         else {                         /* first network to be created    */
           thisnet=firstnet=(FFT_NET *)malloc(sizeof(FFT_NET)); /* alloc. */
           thisnet->next = 0;
         }

         /* build new network and compute transformation */
         build_fft_network(thisnet, npnt, window);
         load_registers(thisnet, source_buf, source_form, source_scale, 
                        trnsfrm_dir);
         compute_fft(thisnet);
         store_registers(thisnet, result_buf, result_form, result_scale,debug);
         return;
}

void fft_clear(void)

/* effects: Deallocates all preserved FFT networks.  Should be used when 
         finished with all computations.
*/

{
         FFT_NET      *thisnet, *nextnet;

         if (firstnet) {
           thisnet=firstnet;
           do {
             nextnet = thisnet->next;
             net_dealloc(thisnet);
             free((char *)thisnet);
           } while (thisnet = nextnet);
         }
}
           

/*****************************************************************************/
/* NETWORK CONSTRUCTION                                                      */
/*****************************************************************************/

void build_fft_network(FFT_NET *fft_net, int n, int window_type)


/* modifies:fft_net
   effects: Constructs the fft network as described in fft.h.  Butterfly
         coefficients, read/write indicies, bit reversed load indicies,
         and array allocations are computed.
*/

{
         int cntr, i, j, s; 
         int       stages, bps;
         int       **p, **q, *pp, *qp;
         SAMPLE     two_pi_div_n = TWO_PI / n;


         /* network definition */
         fft_net->n   = n;
         fft_net->bps = bps = n/2;
         for (i = 0, j = n; j > 1; j >>= 1, i++);
         fft_net->stages = stages = i;
         fft_net->direction = FORWARD;
         fft_net->window_type = window_type;
         fft_net->next = (FFT_NET *)0;

         /* allocate registers, index, coefficient arrays */
         net_alloc(fft_net);


         /* create appropriate windows */
         if (window_type==HANNING)   {
                  create_hanning(fft_net->window, n, 1.);
                  create_hanning(fft_net->inv_window, n, 1./n);
         }
         else {
                  create_rectangular(fft_net->window, n, 1.);
                  create_rectangular(fft_net->inv_window, n, 1./n);
         }


         /* calculate butterfly coefficients */ {
                  
                  int       num_diff_coeffs, power_inc, power;
                  SAMPLE *coeffpr     = fft_net->coeffr;
                  SAMPLE *coeffpi     = fft_net->coeffi;
                  SAMPLE *inv_coeffpr = fft_net->inv_coeffr;
                  SAMPLE *inv_coeffpi = fft_net->inv_coeffi;
                  
                  /* stage one coeffs are 1 + 0j */
                  for (i = 0; i < bps; i++) {
                           *coeffpr = *inv_coeffpr = 1.;
                           *coeffpi = *inv_coeffpi = 0.;
                           coeffpr++; inv_coeffpr++;
                           coeffpi++; inv_coeffpi++;
                  }

                  /* stage 2 to last stage coeffs need calculation */
                  /* (1<<r <=> 2^r */
                  for (s = 2; s <= stages; s++) {
                           
                           num_diff_coeffs = n / (1 << (stages - s + 1)); 
                           power_inc       = 1 << (stages -s);
                           cntr            = 0;

                           for (i = bps/num_diff_coeffs; i > 0; i--) {

                              power  = 0;

                              for (j = num_diff_coeffs; j > 0; j--) {
                                 *coeffpr     = cos(two_pi_div_n*power);
                                 *inv_coeffpr = cos(two_pi_div_n*power);
/* AAA change these signs */     *coeffpi     = -sin(two_pi_div_n*power);
/* change back */                *inv_coeffpi = sin(two_pi_div_n*power);
                                 power += power_inc;
                                 coeffpr++; inv_coeffpr++;
                                 coeffpi++; inv_coeffpi++;
                              }
                           }
                  }
         }

         /* calculate network indicies:  stage exchange indicies are 
            calculated and then used as offset values from the base
            register locations.  The final addresses are then stored in
            fft_net.
         */ {

                  int       index, inc;
                  SAMPLE **indexpr = fft_net->indexpr;
                  SAMPLE **indexpi = fft_net->indexpi;
                  SAMPLE **indexqr = fft_net->indexqr;
                  SAMPLE **indexqi = fft_net->indexqi;
                  SAMPLE *regr     = fft_net->regr;
                  SAMPLE *regi     = fft_net->regi; 


                  /* allocate temporary 2d stage exchange index, 1d temp 
                     load index */
                  p = (int **)malloc(stages * PNTR_SIZE);
                  q = (int **)malloc(stages * PNTR_SIZE);

                  for (s = 0; s < stages; s++) {
                           p[s] = (int *)malloc(bps * INT_SIZE);
                           q[s] = (int *)malloc(bps * INT_SIZE);
                  }

                  /* calculate stage exchange indicies: */
                  for (s = 0; s < stages; s++) {
                           pp = p[s];
                           qp = q[s];
                           inc    = 1 << s;
                           cntr   = 1 << (stages-s-1);
                           i      = j = index = 0;

                           do {
                                    do {
                                             qp[i]   = index + inc;
                                             pp[i++] = index++;
                                    }  while (++j < inc);
                                    index = qp[i-1] + 1;
                                    j = 0;
                           }        while (--cntr);
                  }

                  /* compute actual address values using indicies as offsets */
                  for (s = 0; s < stages; s++) {
                           for (i = 0; i < bps; i++) {
                                    *indexpr++ = regr + p[s][i];
                                    *indexpi++ = regi + p[s][i];
                                    *indexqr++ = regr + q[s][i];
                                    *indexqi++ = regi + q[s][i];
                           }
                  }
         }


         /* calculate load indicies (bit reverse ordering) */
         /* bit reverse ordering achieved by passing normal
            order indicies backwards through the network */
                  
         /* init to normal order indicies */ {
                  int *load_index,*load_indexp;
                  int *temp_indexp, *temp_index;
                  temp_index=temp_indexp=(int *)malloc(n * INT_SIZE);
                           
                  i = 0; j = n;
                  load_index = load_indexp = fft_net->load_index;
                           
                  while (j--)
                    *load_indexp++ = i++;

        /* pass indicies backwards through net */
                  for (s = stages - 1; s > 0; s--) {
                           pp = p[s];
                           qp = q[s];

                           for (i = 0; i < bps; i++) {
                                    temp_index[pp[i]]=load_index[2*i];
                                    temp_index[qp[i]]=load_index[2*i+1];
                           }
                           j = n;
                           load_indexp = load_index;
                           temp_indexp = temp_index;
                           while (j--) 
                             *load_indexp++ = *temp_indexp++;
                  }
                  
                  /* free all temporary arrays */
                  free((char *)temp_index);
                  for (s = 0; s < stages; s++) {
                           free((char *)p[s]);free((char *)q[s]);
                  }
                  free((char *)p);free((char *)q);
         }
}



/*****************************************************************************/
/* REGISTER LOAD AND STORE                                                   */
/*****************************************************************************/

void load_registers(FFT_NET *fft_net, float *buf, int buf_form,
    int buf_scale, int trnsfrm_dir)

/* effects:  Multiplies the input buffer with the appropriate window and
         stores the resulting values in the initial registers of the
         network.  Input buffer must contain values appropriate to form.  
         For RECT, the buffer contains real num. followed by imag num, 
         and for POLAR, it contains magnitude followed by phase.  Pure
         inputs are listed normally.  Both LINEAR and DB scales are 
         interpreted.
*/

{
         int      *load_index = fft_net->load_index;
         SAMPLE *window;
         int index, i = 0, n = fft_net->n;

         if      (trnsfrm_dir==FORWARD)   window = fft_net->window;
         else if (trnsfrm_dir==INVERSE)   window = fft_net->inv_window;
         else {
                  fprintf(stderr, "load_registers:illegal transform direction\n"); 
                  exit(0);
         }
         fft_net->direction = trnsfrm_dir;

         switch(buf_scale) {
         case LINEAR: {

           switch (buf_form) {
           case REAL: {                    /* pure REAL */
             while (i < fft_net->n) {  
               index = load_index[i];
               fft_net->regr[i]=(SAMPLE)buf[index] * window[index];
               fft_net->regi[i]=0.;
               i++;                                            
             }
           } break;

           case IMAG: {                    /* pure IMAGinary */
             while (i < fft_net->n) {  
               index = load_index[i];
               fft_net->regr[i]=0;
               fft_net->regi[i]=(SAMPLE)buf[index] * window[index];
               i++;                            
             }                
           } break;

           case RECT: {                    /* both REAL and IMAGinary */
             while (i < fft_net->n) {
               index = load_index[i];
               fft_net->regr[i]=(SAMPLE)buf[index*2]   * window[index];
               fft_net->regi[i]=(SAMPLE)buf[index*2+1] * window[index];
               i++;
             }
           } break;      
         
           case POLAR: {                   /* magnitude followed by phase */
             while (i < fft_net->n) {
               index = load_index[i];
               fft_net->regr[i]=(SAMPLE)(buf[index*2] * cos(buf[index*2+1])) 
                                                      * window[index];
               fft_net->regi[i]=(SAMPLE)(buf[index*2] * sin(buf[index*2+1])) 
                                                      * window[index];
               i++;                            
             }                
           } break;

           default: {
             fprintf(stderr, "load_registers:illegal input form\n"); 
             exit(0);
           } break;
           }
         } break;

         case DB: {
          
           switch (buf_form) {
           case REAL: {                     /* log pure REAL */
             while (i < fft_net->n) {  
               index = load_index[i];
               fft_net->regr[i]=(SAMPLE)pow(10., (1./20.)*buf[index]) 
                 * window[index];    /* window scaling after linearization */
               fft_net->regi[i]=0.;
               i++;                                            
             }
           } break;

           case IMAG: {                     /* log pure IMAGinary */
             while (i < fft_net->n) {  
               index = load_index[i];
               fft_net->regr[i]=0.;
               fft_net->regi[i]=(SAMPLE)pow(10., (1./20.)*buf[index])
                    * window[index];
               i++;                            
            }                
           } break;

           case RECT: {                     /* log REAL and log IMAGinary */
             while (i < fft_net->n) {
               index = load_index[i];
               fft_net->regr[i]=(SAMPLE)pow(10., (1./20.)*buf[index*2])
                 * window[index];
               fft_net->regi[i]=(SAMPLE)pow(10., (1./20.)*buf[index*2+1]) 
                 * window[index];
               i++;
             }
           } break;      
         
           case POLAR: {                    /* log mag followed by phase */
             while (i < fft_net->n) {
               index = load_index[i];
               fft_net->regr[i]=(SAMPLE)(pow(10., (1./20.)*buf[index*2])
                             * cos(buf[index*2+1])) * window[index];
               fft_net->regi[i]=(SAMPLE)(pow(10., (1./20.)*buf[index*2])
                             * sin(buf[index*2+1])) * window[index];
               i++;                            
             }                
           } break;

           default: {
             fprintf(stderr, "load_registers:illegal input form\n"); 
             exit(0);
           } break;
           }
         } break;

         default: {
           fprintf(stderr, "load_registers:illegal input scale\n"); 
           exit(0);
         } break;
         }
}


void store_registers(FFT_NET    *fft_net, float *buf, int buf_form,
    int buf_scale, int debug)

/* modifies: buf
   effects:  Writes the final contents of the network registers into buf in 
         either linear or db scale, polar or rectangular form.  If any of 
         the pure forms(REAL, IMAG, MAG, or PHASE) are used then only the 
         corresponding part of the registers is stored in buf.
*/

{
         int        i;
         SAMPLE     real, imag, mag, phase;
         int        n;

         i = 0;
         n = fft_net->n;

         switch (buf_scale) {
         case LINEAR: {

           switch (buf_form) {
           case REAL: {                        /* pure REAL */
             do {
               *buf++ = (float)fft_net->regr[i];
             } while (++i < n);  
           } break;

           case IMAG: {                        /* pure IMAGinary */
             do {
               *buf++ = (float)fft_net->regi[i];
             } while (++i < n);  
           } break;

           case RECT: {                        /* both REAL and IMAGinary */   
             do {
               *buf++ = (float)fft_net->regr[i];
               *buf++ = (float)fft_net->regi[i];
             } while (++i < n);  
           } break;

           case MAG: {                         /* magnitude only */
             do {
               real  = fft_net->regr[i];
               imag  = fft_net->regi[i];
               *buf++ = (float)sqrt(real*real+imag*imag);
             } while (++i < n);
           } break;

           case PHASE: {                       /* phase only */
             do {
               real  = fft_net->regr[i];
               imag  = fft_net->regi[i];
               if (real > .00001) 
                 *buf++ = (float)atan2(imag, real);
               else {                          /* deal with bad case */
                 if (imag > 0){      *buf++ = PI / 2.;
                     if(debug) fprintf(stderr,"real=0 and imag > 0\n");}
                 else if (imag < 0){ *buf++ = -PI / 2.;
                     if(debug) fprintf(stderr,"real=0 and imag < 0\n");}
                 else {              *buf++ = 0;
                     if(debug) fprintf(stderr,"real=0 and imag=0\n");}
               }
             } while (++i < n);
           } break;

           case POLAR: {                       /* magnitude and phase */
             do {
               real    = fft_net->regr[i];
               imag    = fft_net->regi[i];
               *buf++  = (float)sqrt(real*real+imag*imag);
               if (real)                       /* a hack to avoid div by zero */
                 *buf++ = (float)atan2(imag, real);
               else {                          /* deal with bad case */
                 if (imag > 0)      *buf++ = PI / 2.;
                 else if (imag < 0) *buf++ = -PI / 2.;
                 else               *buf++ = 0;
               }
             } while (++i < n);
           } break;

           default: {
             fprintf(stderr, "store_registers:illegal output form\n");
             exit(0);
           } break;
           }
         } break;
                
         case DB: {

           switch (buf_form) {
           case REAL: {                        /* real only */
             do {
               *buf++ = (float)20.*log10(fft_net->regr[i]);
             } while (++i < n);
           } break;

           case IMAG: {                        /* imag only */
             do {
               *buf++ = (float)20.*log10(fft_net->regi[i]);
             } while (++i < n);
           } break;

           case RECT: {                        /* real and imag */
             do {
               *buf++ = (float)20.*log10(fft_net->regr[i]);
               *buf++ = (float)20.*log10(fft_net->regi[i]);
             } while (++i < n);  
           } break;

           case MAG: {                         /* magnitude only  */
             do {
               real  = fft_net->regr[i];
               imag  = fft_net->regi[i];
               *buf++ = (float)20.*log10(sqrt(real*real+imag*imag));  
             } while (++i < n);
           } break;

           case PHASE: {                       /* phase only */
             do {
               real  = fft_net->regr[i];
               imag  = fft_net->regi[i];
               if (real) 
                 *buf++ = (float)atan2(imag, real);
               else {                          /* deal with bad case */
                 if (imag > 0)      *buf++ = PI / 2.;
                 else if (imag < 0) *buf++ = -PI / 2.;
                 else               *buf++ = 0;
               }
             } while (++i < n);
           } break;

           case POLAR: {                       /* magnitude and phase */
             do {
               real  = fft_net->regr[i];
               imag  = fft_net->regi[i];
               *buf++ = (float)20.*log10(sqrt(real*real+imag*imag));           
               if (real) 
                 *buf++ = (float)atan2(imag, real);
               else {                          /* deal with bad case */
                 if (imag > 0)      *buf++ = PI / 2.;
                 else if (imag < 0) *buf++ = -PI / 2.;
                 else               *buf++ = 0;
               }
             } while (++i < n);
           } break;

           default: {
             fprintf(stderr, "store_registers:illegal output form\n");
             exit(0);
           } break;
           } 
         } break;

         default: {
           fprintf(stderr, "store_registers:illegal output scale\n");
           exit(0);
         } break;
         }
}



/*****************************************************************************/
/* COMPUTE TRANSFORMATION                                                    */
/*****************************************************************************/

void compute_fft(FFT_NET  *fft_net)


/* modifies: fft_net
   effects: Passes the values (already loaded) in the registers through
         the network, multiplying with appropriate coefficients at each 
         stage.  The fft result will be in the registers at the end of
         the computation.  The direction of the transformation is indicated
         by the network flag 'direction'.  The form of the computation is:

         X(pn) = X(p) + C*X(q)
         X(qn) = X(p) - C*X(q)

         where X(pn,qn) represents the output of the registers at each stage.  
         The calculations are actually done in place.  Register pointers are 
         used to speed up the calculations.

         Register and coefficient addresses involved in the calculations 
         are stored sequentially and are accessed as such. fft_net->indexp,
         indexq contain pointers to the relevant addresses, and fft_net->coeffs, 
         inv_coeffs points to the appropriate coefficients at each stage of the 
         computation.
*/

{
         SAMPLE     **xpr, **xpi, **xqr, **xqi, *cr, *ci;
         int        i;
         SAMPLE     tpr, tpi, tqr, tqi;
         int        bps = fft_net->bps;
         int        cnt = bps * (fft_net->stages - 1);

         /* predetermined register addresses and coefficients */
         xpr = fft_net->indexpr;              
         xpi = fft_net->indexpi;              
         xqr = fft_net->indexqr;
         xqi = fft_net->indexqi;

         if (fft_net->direction==FORWARD) {     /* FORWARD FFT coefficients */
                  cr  = fft_net->coeffr;
                  ci  = fft_net->coeffi;
         }
         else {                                 /* INVERSE FFT coefficients */
                  cr = fft_net->inv_coeffr;
                  ci = fft_net->inv_coeffi;
         }

         /* stage one coefficients are 1 + 0j so C*X(q)=X(q)  */
         /* bps mults can be avoided                          */

         for (i = 0; i < bps; i++) {

                  /* add X(p) and X(q) */
                  tpr = **xpr + **xqr;
                  tpi = **xpi + **xqi;
                  tqr = **xpr - **xqr;
                  tqi = **xpi - **xqi;
                  
                  /* exchange register with temp */
                  **xpr = tpr;
                  **xpi = tpi;
                  **xqr = tqr;
                  **xqi = tqi;

                  /* next set of register for calculations: */
                  xpr++; xpi++; xqr++; xqi++; cr++; ci++;

         }

         for (i = 0; i < cnt; i++) {
                  
                  /* mult X(q) by coeff C */
                  tqr = **xqr * *cr - **xqi * *ci;
                  tqi = **xqr * *ci + **xqi * *cr;

                  /* exchange register with temp */
                  **xqr = tqr;
                  **xqi = tqi;

                  /* add X(p) and X(q) */
                  tpr = **xpr + **xqr;
                  tpi = **xpi + **xqi;
                  tqr = **xpr - **xqr;
                  tqi = **xpi - **xqi;
                  
                  /* exchange register with temp */
                  **xpr = tpr;
                  **xpi = tpi;
                  **xqr = tqr;
                  **xqi = tqi;
                  /* next set of register for calculations: */
                  xpr++; xpi++; xqr++; xqi++; cr++; ci++;
         }
}


/****************************************************************************/
/* SUPPORT MODULES                                                          */
/****************************************************************************/

void net_alloc(FFT_NET *fft_net)


/* effects: Allocates appropriate two dimensional arrays and assigns
           correct internal pointers.
*/

{

         int      stages, bps, n;

         n      = fft_net->n;
         stages = fft_net->stages;
         bps    = fft_net->bps;


         /* two dimensional arrays with elements stored sequentially */

         fft_net->load_index  = (int *)malloc(n * INT_SIZE);
         fft_net->regr        = (SAMPLE *)malloc(n * SAMPLE_SIZE);
         fft_net->regi        = (SAMPLE *)malloc(n * SAMPLE_SIZE);
         fft_net->coeffr      = (SAMPLE *)malloc(stages*bps*SAMPLE_SIZE);
         fft_net->coeffi      = (SAMPLE *)malloc(stages*bps*SAMPLE_SIZE);
         fft_net->inv_coeffr  = (SAMPLE *)malloc(stages*bps*SAMPLE_SIZE);
         fft_net->inv_coeffi  = (SAMPLE *)malloc(stages*bps*SAMPLE_SIZE);
         fft_net->indexpr     = (SAMPLE **)malloc(stages * bps * PNTR_SIZE);
         fft_net->indexpi     = (SAMPLE **)malloc(stages * bps * PNTR_SIZE);
         fft_net->indexqr     = (SAMPLE **)malloc(stages * bps * PNTR_SIZE);
         fft_net->indexqi     = (SAMPLE **)malloc(stages * bps * PNTR_SIZE);

         /* one dimensional load window */
         fft_net->window      = (SAMPLE *)malloc(n * SAMPLE_SIZE);
         fft_net->inv_window  = (SAMPLE *)malloc(n * SAMPLE_SIZE);
}

void net_dealloc(FFT_NET *fft_net)


/* effects: Deallocates given FFT network.
*/

{

         free((char *)fft_net->load_index);  
         free((char *)fft_net->regr);        
         free((char *)fft_net->regi);        
         free((char *)fft_net->coeffr);      
         free((char *)fft_net->coeffi);      
         free((char *)fft_net->inv_coeffr);  
         free((char *)fft_net->inv_coeffi);  
         free((char *)fft_net->indexpr);     
         free((char *)fft_net->indexpi);     
         free((char *)fft_net->indexqr);   
         free((char *)fft_net->indexqi);   
         free((char *)fft_net->window);
         free((char *)fft_net->inv_window);
}


BOOL power_of_two(n)

int               n;

/* effects: Returns TRUE if n is a power of two, otherwise FALSE.
*/

{
         int      i;

         for (i = n; i > 1; i >>= 1) 
                  if (i & 1) return FALSE;        /* more than one bit high */
         return TRUE;
}


void create_hanning(SAMPLE *window, int n, SAMPLE scale)

/* effects: Fills the buffer window with a hanning window of the appropriate
         size scaled by scale.
*/

{
         SAMPLE     a, pi_div_n = PI/n;
         int        k;

         for (k=1; k <= n; k++) {
                  a = sin(k * pi_div_n);
                  *window++ = scale * a * a;
         }
}


void create_rectangular(SAMPLE *window, int n, SAMPLE scale)

/* effects: Fills the buffer window with a rectangular window of the
   appropriate size of height scale.
*/

{
         while (n--)
           *window++ = scale;
}


void short_to_float(short *short_buf, float *float_buf, int n)

/* effects; Converts short_buf to floats and stores them in float_buf.
*/

{
         while (n--) {
                  *float_buf++ = (float)*short_buf++;
         }
}


/* here's the meat: */

void pd_fft(float *buf, int npoints, int inverse)
{
  double renorm;
  float *fp, *fp2;
  int i;
  renorm = (inverse ? npoints : 1.);
  cfft((inverse ? INVERSE : FORWARD), npoints, RECTANGULAR, 
       buf, RECT, LINEAR, buf, RECT, LINEAR, 0);
  for (i = npoints << 1, fp = buf; i--; fp++) *fp *= renorm;