Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/* Copyright (c) 1997-1999 Miller Puckette.
* For information on usage and redistribution, and for a DISCLAIMER OF ALL
* WARRANTIES, see the file, "LICENSE.txt," in this distribution. */
/* sinusoidal oscillator and table lookup; see also tabosc4~ in d_array.c.
*/
#include "m_pd.h"
#include "math.h"
#define UNITBIT32 1572864. /* 3*2^19; bit 32 has place value 1 */
/* machine-dependent definitions. These ifdefs really
should have been by CPU type and not by operating system! */
#ifdef IRIX
/* big-endian. Most significant byte is at low address in memory */
#define HIOFFSET 0 /* word offset to find MSB */
#define LOWOFFSET 1 /* word offset to find LSB */
#define int32 long /* a data type that has 32 bits */
#endif /* IRIX */
#ifdef MSW
/* little-endian; most significant byte is at highest address */
#define HIOFFSET 1
#define LOWOFFSET 0
#define int32 long
#endif
#if defined(__FreeBSD__) || defined(__APPLE__)
#include <machine/endian.h>
#endif
#ifdef __linux__
#include <endian.h>
#endif
#if defined(__unix__) || defined(__APPLE__)
#if !defined(BYTE_ORDER) || !defined(LITTLE_ENDIAN)
#error No byte order defined
#endif
#if BYTE_ORDER == LITTLE_ENDIAN
#define HIOFFSET 1
#define LOWOFFSET 0
#else
#define HIOFFSET 0 /* word offset to find MSB */
#define LOWOFFSET 1 /* word offset to find LSB */
#endif /* __BYTE_ORDER */
#include <sys/types.h>
#define int32 int32_t
#endif /* __unix__ or __APPLE__*/
union tabfudge
{
double tf_d;
int32 tf_i[2];
};
/* -------------------------- phasor~ ------------------------------ */
#if 1 /* in the style of R. Hoeldrich (ICMC 1995 Banff) */
typedef struct _phasor
{
t_object x_obj;
double x_phase;
float x_conv;
float x_f; /* scalar frequency */
} t_phasor;
static void *phasor_new(t_floatarg f)
{
t_phasor *x = (t_phasor *)pd_new(phasor_class);
x->x_f = f;
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
x->x_phase = 0;
x->x_conv = 0;
outlet_new(&x->x_obj, gensym("signal"));
return (x);
}
static t_int *phasor_perform(t_int *w)
{
t_phasor *x = (t_phasor *)(w[1]);
t_float *in = (t_float *)(w[2]);
t_float *out = (t_float *)(w[3]);
int n = (int)(w[4]);
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
union tabfudge tf;
int normhipart;
float conv = x->x_conv;
tf.tf_d = UNITBIT32;
normhipart = tf.tf_i[HIOFFSET];
tf.tf_d = dphase;
while (n--)
{
tf.tf_i[HIOFFSET] = normhipart;
dphase += *in++ * conv;
*out++ = tf.tf_d - UNITBIT32;
tf.tf_d = dphase;
}
tf.tf_i[HIOFFSET] = normhipart;
x->x_phase = tf.tf_d - UNITBIT32;
return (w+5);
}
static void phasor_dsp(t_phasor *x, t_signal **sp)
{
x->x_conv = 1./sp[0]->s_sr;
dsp_add(phasor_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n);
}
static void phasor_ft1(t_phasor *x, t_float f)
{
x->x_phase = f;
}
static void phasor_setup(void)
{
phasor_class = class_new(gensym("phasor~"), (t_newmethod)phasor_new, 0,
sizeof(t_phasor), 0, A_DEFFLOAT, 0);
CLASS_MAINSIGNALIN(phasor_class, t_phasor, x_f);
class_addmethod(phasor_class, (t_method)phasor_dsp, gensym("dsp"),
A_CANT, 0);
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
class_addmethod(phasor_class, (t_method)phasor_ft1,
gensym("ft1"), A_FLOAT, 0);
}
#endif /* Hoeldrich version */
/* ------------------------ cos~ ----------------------------- */
float *cos_table;
static t_class *cos_class;
typedef struct _cos
{
t_object x_obj;
float x_f;
} t_cos;
static void *cos_new(void)
{
t_cos *x = (t_cos *)pd_new(cos_class);
outlet_new(&x->x_obj, gensym("signal"));
x->x_f = 0;
return (x);
}
static t_int *cos_perform(t_int *w)
{
t_float *in = (t_float *)(w[1]);
t_float *out = (t_float *)(w[2]);
int n = (int)(w[3]);
float *tab = cos_table, *addr, f1, f2, frac;
double dphase;
int normhipart;
union tabfudge tf;
tf.tf_d = UNITBIT32;
normhipart = tf.tf_i[HIOFFSET];
#if 0 /* this is the readable version of the code. */
while (n--)
{
dphase = (double)(*in++ * (float)(COSTABSIZE)) + UNITBIT32;
tf.tf_d = dphase;
addr = tab + (tf.tf_i[HIOFFSET] & (COSTABSIZE-1));
tf.tf_i[HIOFFSET] = normhipart;
frac = tf.tf_d - UNITBIT32;
f1 = addr[0];
f2 = addr[1];
*out++ = f1 + frac * (f2 - f1);
}
#endif
#if 1 /* this is the same, unwrapped by hand. */
dphase = (double)(*in++ * (float)(COSTABSIZE)) + UNITBIT32;
tf.tf_d = dphase;
addr = tab + (tf.tf_i[HIOFFSET] & (COSTABSIZE-1));
tf.tf_i[HIOFFSET] = normhipart;
while (--n)
{
dphase = (double)(*in++ * (float)(COSTABSIZE)) + UNITBIT32;
frac = tf.tf_d - UNITBIT32;
tf.tf_d = dphase;
f1 = addr[0];
f2 = addr[1];
addr = tab + (tf.tf_i[HIOFFSET] & (COSTABSIZE-1));
*out++ = f1 + frac * (f2 - f1);
tf.tf_i[HIOFFSET] = normhipart;
}
frac = tf.tf_d - UNITBIT32;
f1 = addr[0];
f2 = addr[1];
*out++ = f1 + frac * (f2 - f1);
#endif
return (w+4);
}
static void cos_dsp(t_cos *x, t_signal **sp)
{
dsp_add(cos_perform, 3, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n);
}
static void cos_maketable(void)
{
int i;
float *fp, phase, phsinc = (2. * 3.14159) / COSTABSIZE;
union tabfudge tf;
if (cos_table) return;
cos_table = (float *)getbytes(sizeof(float) * (COSTABSIZE+1));
for (i = COSTABSIZE + 1, fp = cos_table, phase = 0; i--;
fp++, phase += phsinc)
*fp = cos(phase);
/* here we check at startup whether the byte alignment
is as we declared it. If not, the code has to be
recompiled the other way. */
tf.tf_d = UNITBIT32 + 0.5;
if ((unsigned)tf.tf_i[LOWOFFSET] != 0x80000000)
bug("cos~: unexpected machine alignment");
}
static void cos_setup(void)
{
cos_class = class_new(gensym("cos~"), (t_newmethod)cos_new, 0,
sizeof(t_cos), 0, A_DEFFLOAT, 0);
CLASS_MAINSIGNALIN(cos_class, t_cos, x_f);
class_addmethod(cos_class, (t_method)cos_dsp, gensym("dsp"), A_CANT, 0);
cos_maketable();
}
/* ------------------------ osc~ ----------------------------- */
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
typedef struct _osc
{
t_object x_obj;
double x_phase;
float x_conv;
float x_f; /* frequency if scalar */
} t_osc;
static void *osc_new(t_floatarg f)
{
t_osc *x = (t_osc *)pd_new(osc_class);
x->x_f = f;
outlet_new(&x->x_obj, gensym("signal"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("ft1"));
x->x_phase = 0;
x->x_conv = 0;
return (x);
}
static t_int *osc_perform(t_int *w)
{
t_osc *x = (t_osc *)(w[1]);
t_float *in = (t_float *)(w[2]);
t_float *out = (t_float *)(w[3]);
int n = (int)(w[4]);
float *tab = cos_table, *addr, f1, f2, frac;
double dphase = x->x_phase + UNITBIT32;
int normhipart;
union tabfudge tf;
float conv = x->x_conv;
tf.tf_d = UNITBIT32;
normhipart = tf.tf_i[HIOFFSET];
#if 0
while (n--)
{
tf.tf_d = dphase;
dphase += *in++ * conv;
addr = tab + (tf.tf_i[HIOFFSET] & (COSTABSIZE-1));
tf.tf_i[HIOFFSET] = normhipart;
frac = tf.tf_d - UNITBIT32;
f1 = addr[0];
f2 = addr[1];
*out++ = f1 + frac * (f2 - f1);
}
#endif
#if 1
tf.tf_d = dphase;
dphase += *in++ * conv;
addr = tab + (tf.tf_i[HIOFFSET] & (COSTABSIZE-1));
tf.tf_i[HIOFFSET] = normhipart;
frac = tf.tf_d - UNITBIT32;
while (--n)
{
tf.tf_d = dphase;
f1 = addr[0];
dphase += *in++ * conv;
f2 = addr[1];
addr = tab + (tf.tf_i[HIOFFSET] & (COSTABSIZE-1));
tf.tf_i[HIOFFSET] = normhipart;
*out++ = f1 + frac * (f2 - f1);
frac = tf.tf_d - UNITBIT32;
}
f1 = addr[0];
f2 = addr[1];
*out++ = f1 + frac * (f2 - f1);
#endif
tf.tf_d = UNITBIT32 * COSTABSIZE;
normhipart = tf.tf_i[HIOFFSET];
tf.tf_d = dphase + (UNITBIT32 * COSTABSIZE - UNITBIT32);
tf.tf_i[HIOFFSET] = normhipart;
x->x_phase = tf.tf_d - UNITBIT32 * COSTABSIZE;
return (w+5);
}
static void osc_dsp(t_osc *x, t_signal **sp)
{
x->x_conv = COSTABSIZE/sp[0]->s_sr;
dsp_add(osc_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n);
}
static void osc_ft1(t_osc *x, t_float f)
{
x->x_phase = COSTABSIZE * f;
}
static void osc_setup(void)
{
osc_class = class_new(gensym("osc~"), (t_newmethod)osc_new, 0,
sizeof(t_osc), 0, A_DEFFLOAT, 0);
CLASS_MAINSIGNALIN(osc_class, t_osc, x_f);
class_addmethod(osc_class, (t_method)osc_dsp, gensym("dsp"), A_CANT, 0);
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
class_addmethod(osc_class, (t_method)osc_ft1, gensym("ft1"), A_FLOAT, 0);
cos_maketable();
}
/* ---------------- vcf~ - 2-pole bandpass filter. ----------------- */
typedef struct vcfctl
{
float c_re;
float c_im;
float c_q;
float c_isr;
} t_vcfctl;
typedef struct sigvcf
{
t_object x_obj;
t_vcfctl x_cspace;
t_vcfctl *x_ctl;
float x_f;
} t_sigvcf;
t_class *sigvcf_class;
static void *sigvcf_new(t_floatarg q)
{
t_sigvcf *x = (t_sigvcf *)pd_new(sigvcf_class);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("float"), gensym("ft1"));
outlet_new(&x->x_obj, gensym("signal"));
outlet_new(&x->x_obj, gensym("signal"));
x->x_ctl = &x->x_cspace;
x->x_cspace.c_re = 0;
x->x_cspace.c_im = 0;
x->x_cspace.c_q = q;
x->x_cspace.c_isr = 0;
x->x_f = 0;
return (x);
}
static void sigvcf_ft1(t_sigvcf *x, t_floatarg f)
{
x->x_ctl->c_q = (f > 0 ? f : 0.f);
}
static t_int *sigvcf_perform(t_int *w)
{
float *in1 = (float *)(w[1]);
float *in2 = (float *)(w[2]);
float *out1 = (float *)(w[3]);
float *out2 = (float *)(w[4]);
t_vcfctl *c = (t_vcfctl *)(w[5]);
int n = (t_int)(w[6]);
int i;
float re = c->c_re, re2;
float im = c->c_im;
float q = c->c_q;
float qinv = (q > 0? 1.0f/q : 0);
float ampcorrect = 2.0f - 2.0f / (q + 2.0f);
float isr = c->c_isr;
float coefr, coefi;
float *tab = cos_table, *addr, f1, f2, frac;
double dphase;
int normhipart, tabindex;
union tabfudge tf;
tf.tf_d = UNITBIT32;
normhipart = tf.tf_i[HIOFFSET];
for (i = 0; i < n; i++)
{
float cf, cfindx, r, oneminusr;
cf = *in2++ * isr;
if (cf < 0) cf = 0;
cfindx = cf * (float)(COSTABSIZE/6.28318f);
r = (qinv > 0 ? 1 - cf * qinv : 0);
if (r < 0) r = 0;
oneminusr = 1.0f - r;
dphase = ((double)(cfindx)) + UNITBIT32;
tf.tf_d = dphase;
tabindex = tf.tf_i[HIOFFSET] & (COSTABSIZE-1);
addr = tab + tabindex;
tf.tf_i[HIOFFSET] = normhipart;
frac = tf.tf_d - UNITBIT32;
f1 = addr[0];
f2 = addr[1];
coefr = r * (f1 + frac * (f2 - f1));
addr = tab + ((tabindex - (COSTABSIZE/4)) & (COSTABSIZE-1));
f1 = addr[0];
f2 = addr[1];
coefi = r * (f1 + frac * (f2 - f1));
f1 = *in1++;
re2 = re;
*out1++ = re = ampcorrect * oneminusr * f1
+ coefr * re2 - coefi * im;
*out2++ = im = coefi * re2 + coefr * im;
}
if (PD_BIGORSMALL(re))
re = 0;
if (PD_BIGORSMALL(im))
im = 0;
c->c_re = re;
c->c_im = im;
return (w+7);
}
static void sigvcf_dsp(t_sigvcf *x, t_signal **sp)
{
x->x_ctl->c_isr = 6.28318f/sp[0]->s_sr;
dsp_add(sigvcf_perform, 6,
sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec,
x->x_ctl, sp[0]->s_n);
}
void sigvcf_setup(void)
{
sigvcf_class = class_new(gensym("vcf~"), (t_newmethod)sigvcf_new, 0,
sizeof(t_sigvcf), 0, A_DEFFLOAT, 0);
CLASS_MAINSIGNALIN(sigvcf_class, t_sigvcf, x_f);
class_addmethod(sigvcf_class, (t_method)sigvcf_dsp, gensym("dsp"),
A_CANT, 0);
class_addmethod(sigvcf_class, (t_method)sigvcf_ft1,
gensym("ft1"), A_FLOAT, 0);
}
/* -------------------------- noise~ ------------------------------ */
static t_class *noise_class;
typedef struct _noise
{
t_object x_obj;
int x_val;
} t_noise;
static void *noise_new(void)
{
t_noise *x = (t_noise *)pd_new(noise_class);
static int init = 307;
x->x_val = (init *= 1319);
outlet_new(&x->x_obj, gensym("signal"));
return (x);
}
static t_int *noise_perform(t_int *w)
{
t_sample *out = (t_sample *)(w[1]);
int *vp = (int *)(w[2]);
int n = (int)(w[3]);
int val = *vp;
while (n--)
{
*out++ = ((float)((val & 0x7fffffff) - 0x40000000)) *
(float)(1.0 / 0x40000000);
val = val * 435898247 + 382842987;
}
*vp = val;
return (w+4);
}
static void noise_dsp(t_noise *x, t_signal **sp)
{
dsp_add(noise_perform, 3, sp[0]->s_vec, &x->x_val, sp[0]->s_n);
}
static void noise_setup(void)
{
noise_class = class_new(gensym("noise~"), (t_newmethod)noise_new, 0,
sizeof(t_noise), 0, 0);
class_addmethod(noise_class, (t_method)noise_dsp, gensym("dsp"), A_CANT, 0);